Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8007): 365-372, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509364

RESUMEN

Although modern humans left Africa multiple times over 100,000 years ago, those broadly ancestral to non-Africans dispersed less than 100,000 years ago1. Most models hold that these events occurred through green corridors created during humid periods because arid intervals constrained population movements2. Here we report an archaeological site-Shinfa-Metema 1, in the lowlands of northwest Ethiopia, with Youngest Toba Tuff cryptotephra dated to around 74,000 years ago-that provides early and rare evidence of intensive riverine-based foraging aided by the likely adoption of the bow and arrow. The diet included a wide range of terrestrial and aquatic animals. Stable oxygen isotopes from fossil mammal teeth and ostrich eggshell show that the site was occupied during a period of high seasonal aridity. The unusual abundance of fish suggests that capture occurred in the ever smaller and shallower waterholes of a seasonal river during a long dry season, revealing flexible adaptations to challenging climatic conditions during the Middle Stone Age. Adaptive foraging along dry-season waterholes would have transformed seasonal rivers into 'blue highway' corridors, potentially facilitating an out-of-Africa dispersal and suggesting that the event was not restricted to times of humid climates. The behavioural flexibility required to survive seasonally arid conditions in general, and the apparent short-term effects of the Toba supereruption in particular were probably key to the most recent dispersal and subsequent worldwide expansion of modern humans.


Asunto(s)
Clima , Migración Humana , Animales , Humanos , Arqueología , Etiopía , Mamíferos , Estaciones del Año , Dieta/historia , Historia Antigua , Migración Humana/historia , Fósiles , Struthioniformes , Sequías , Peces
2.
Proc Natl Acad Sci U S A ; 116(13): 6051-6056, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30858323

RESUMEN

Old World monkeys (Cercopithecoidea) are a highly successful primate radiation, with more than 130 living species and the broadest geographic range of any extant group except humans. Although cercopithecoids are highly variable in habitat use, social behavior, and diet, a signature dental feature unites all of its extant members: bilophodonty (bi: two, loph: crest, dont: tooth), or the presence of two cross-lophs on the molars. This feature offers an adaptable Bauplan that, with small changes to its individual components, permits its members to process vastly different kinds of food. Old World monkeys diverged from apes perhaps 30 million years ago (Ma) according to molecular estimates, and the molar lophs are sometimes incompletely developed in fossil species, suggesting a mosaic origin for this key adaptation. However, critical aspects of the group's earliest evolution remain unknown because the cercopithecoid fossil record before ∼18 Ma consists of only two isolated teeth, one from Uganda and one from Tanzania. Here we describe a primitive Old World monkey from Nakwai, Kenya, dated at ∼22 Ma, that offers direct evidence for the initial key steps in the evolution of the cercopithecoid dentition. The simple dentition and absence of bilophodonty in the Nakwai monkey indicate that the initial radiation of Old World monkeys was first characterized by a reorganization of basic molar morphology, and a reliance on cusps rather than lophs suggests frugivorous diets and perhaps hard object feeding. Bilophodonty evolved later, likely in response to the inclusion of leaves in the diet.


Asunto(s)
Cercopithecidae/anatomía & histología , Fósiles/anatomía & histología , Diente/anatomía & histología , Animales , Evolución Biológica , Dieta , Frutas , Historia Antigua , Kenia , Diente Molar/anatomía & histología , Hojas de la Planta
3.
Geol Soc Spec Publ ; 376(1): 201-234, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25339793

RESUMEN

Patterns of plant distribution by palaeoenvironment were examined across the Pennsylvanian-Permian transition in North-Central Texas. Stratigraphically recurrent packages of distinct lithofacies, representing different habitats, contain qualitatively and quantitatively different macrofloras and microfloras. The species pools demonstrate niche conservatism, remaining closely tied to specific habitats, during both short-term cyclic environmental change and a long-term trend of increasing aridity. The deposits examined principally comprise the terrestrial Markley and its approximate marine equivalent, the Harpersville Formation and parts of lower Archer City Formation. Fossiliferous deposits are lens-like, likely representing fill sequences of channels formed during abandonment phases. Palaeosols, represented by blocky mudstones, comprise a large fraction of the deposits. They suggest progressive climate change from minimally seasonal humid to seasonal subhumid to seasonal dry subhumid. Five lithofacies yielded plants: kaolinite-dominated siltstone, organic shale, mudstone beds within organic shale, coarsening upward mudstone-sandstone interbeds and channel sandstone. Both macro- and microflora were examined. Lithofacies proved compositionally distinct, with different patterns of dominance diversity. Organic shales (swamp deposits), mudstone partings (swamp drainages) and coarsening upward mudstone-sandstone interbeds (floodplains) typically contain Pennsylvanian wetland vegetation. Kaolinite-dominated siltstones and (to the extent known) sandstones contain taxa indicative of seasonally dry substrates. Some kaolinite-dominated siltstones and organic shales/coals yielded palynomorphs. Microfloras are more diverse, with greater wetland-dryland overlap than macrofloras. It appears that these two floras were coexistent at times on the regional landscape.

4.
Science ; 315(5808): 87-91, 2007 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-17204648

RESUMEN

The late Paleozoic deglaciation is the vegetated Earth's only recorded icehouse-to-greenhouse transition, yet the climate dynamics remain enigmatic. By using the stable isotopic compositions of soil-formed minerals, fossil-plant matter, and shallow-water brachiopods, we estimated atmospheric partial pressure of carbon dioxide (pCO2) and tropical marine surface temperatures during this climate transition. Comparison to southern Gondwanan glacial records documents covariance between inferred shifts in pCO2, temperature, and ice volume consistent with greenhouse gas forcing of climate. Major restructuring of paleotropical flora in western Euramerica occurred in step with climate and pCO2 shifts, illustrating the biotic impact associated with past CO2-forced turnover to a permanent ice-free world.


Asunto(s)
Atmósfera , Dióxido de Carbono , Clima , Ecosistema , Plantas , Animales , Biodiversidad , Carbonato de Calcio/análisis , Isótopos de Carbono , Fósiles , Efecto Invernadero , Cubierta de Hielo , Invertebrados/química , Estaciones del Año , Suelo/análisis , Temperatura , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...